Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 104(50): 20090-5, 2007 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-18077435

RESUMO

Sleep is regulated by a homeostatic process that determines its need and by a circadian process that determines its timing. By using sleep deprivation and transcriptome profiling in inbred mouse strains, we show that genetic background affects susceptibility to sleep loss at the transcriptional level in a tissue-dependent manner. In the brain, Homer1a expression best reflects the response to sleep loss. Time-course gene expression analysis suggests that 2,032 brain transcripts are under circadian control. However, only 391 remain rhythmic when mice are sleep-deprived at four time points around the clock, suggesting that most diurnal changes in gene transcription are, in fact, sleep-wake-dependent. By generating a transgenic mouse line, we show that in Homer1-expressing cells specifically, apart from Homer1a, three other activity-induced genes (Ptgs2, Jph3, and Nptx2) are overexpressed after sleep loss. All four genes play a role in recovery from glutamate-induced neuronal hyperactivity. The consistent activation of Homer1a suggests a role for sleep in intracellular calcium homeostasis for protecting and recovering from the neuronal activation imposed by wakefulness.


Assuntos
Encéfalo/fisiologia , Proteínas de Transporte/fisiologia , Privação do Sono/metabolismo , Sono/fisiologia , Animais , Proteínas de Transporte/genética , Predisposição Genética para Doença , Proteínas de Arcabouço Homer , Camundongos , Camundongos Endogâmicos AKR , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Transgênicos , RNA Mensageiro/metabolismo , Sono/genética , Privação do Sono/genética
2.
Cell ; 126(6): 1135-45, 2006 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-16990137

RESUMO

Many pathogenic organisms produce pore-forming toxins as virulence factors. Target cells however mount a response to such membrane damage. Here we show that toxin-induced membrane permeabilization leads to a decrease in cytoplasmic potassium, which promotes the formation of a multiprotein oligomeric innate immune complex, called the inflammasome, and the activation of caspase-1. Further, we find that when rendered proteolytic in this context caspase-1 induces the activation of the central regulators of membrane biogenesis, the Sterol Regulatory Element Binding Proteins (SREBPs), which in turn promote cell survival upon toxin challenge possibly by facilitating membrane repair. This study highlights that, in addition to its well-established role in triggering inflammation via the processing of the precursor forms of interleukins, caspase-1 has a broader role, in particular linking the intracellular ion composition to lipid metabolic pathways, membrane biogenesis, and survival.


Assuntos
Toxinas Bacterianas/metabolismo , Caspase 1/metabolismo , Membrana Celular/metabolismo , Imunidade Inata/fisiologia , Lipídeos de Membrana/metabolismo , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Aeromonas/metabolismo , Animais , Infecções Bacterianas/metabolismo , Infecções Bacterianas/fisiopatologia , Toxinas Bacterianas/farmacologia , Células CHO , Membrana Celular/efeitos dos fármacos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Permeabilidade da Membrana Celular/fisiologia , Sobrevivência Celular/fisiologia , Cricetinae , Células HeLa , Humanos , Proteínas Citotóxicas Formadoras de Poros , Potássio/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...